On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids

نویسندگان

  • JOSÉ LUIZ BOLDRINI
  • MARKO ROJAS-MEDAR
  • José Luiz
  • José Luiz BOLDRINI
  • Marko ROJAS-MEDAR
چکیده

— We study the convergence rate of solutions of spectral semi-Galerkin approximations for the équations for the motion of a nonhomogeneous incompressible asymmetrie fluid in a bounded domain. We find error estimâtes that are optimal in the H -norm as well as improved Résumé. — On étudie le taux de convergence d'une approximation de type semi-Galerkin spectrale vers la solution des équations du mouvement d'un fluide assymétrique incompressible non-homogène dans un domaine borné. On trouve des estimations d'erreur qui sont optimales dans la norme H ainsi que des estimations améliorées dans la norme L .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence analysis of spectral Tau method for fractional Riccati differential equations

‎In this paper‎, ‎a spectral Tau method for solving fractional Riccati‎ ‎differential equations is considered‎. ‎This technique describes‎ ‎converting of a given fractional Riccati differential equation to a‎ ‎system of nonlinear algebraic equations by using some simple‎ ‎matrices‎. ‎We use fractional derivatives in the Caputo form‎. ‎Convergence analysis of the proposed method is given an...

متن کامل

Convergence analysis of the sinc collocation method for integro-differential equations system

In this paper, a numerical solution for a system of linear Fredholm integro-differential equations by means of the sinc method is considered. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. The exponential convergence rate $O(e^{-k sqrt{N}})$ of the method is proved. The analytical results are illustrated with numerical examp...

متن کامل

Error estimates for semi-Galerkin approximations of nonhomogeneous incompressible fluids

We consider the spectral semi-Galerkin method applied to the nonhomogeneous Navier-Stokes equations. Under certain conditions it is known that the approximate solutions constructed through this method converge to a global strong solution of these equations. Here, we derive an optimal uniform in time error estimate in the H norm for the velocity. We also derive an error estimate for the density ...

متن کامل

Entropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid

The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017